

HFOS Documentation

	Version

	1.2.1

	Release

	1.2.1

	Date

	Oct 02, 2018

About

	Hackerfleet

	HFOS

Sailor’s Manual

	Getting Started

	HFOS User’s Manual

Developer Documentation

	How to help the project?

	Developer Guidelines

	Recent Changes

	Road Map

	Contributors

	Supporters

	Frequently Asked Questions

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

	Recent Changes

	Documentation TODO

	Development README Page

Hackerfleet

	Who we are

	Our goals

	Timeline

	Founders

	Communication

Who we are

The Hackerfleet is a research & development venture founded by some friends who decided to
revolutionize the maritime technology sector.

We develop opensource hardware and software for unmanned and manned vessels on all
waters, we do this publicly and transparent, our repositorys are open for you.

Our goals

One of our primary goals is to establish a better communication network between
compatible hardware, for automatic data exchange between ships.

We want to aggregate all the information that is currently thrown away on shipbridges
all over the world and make the best free map of the ocean.

This vast ressource of currently nearly unused data will also help scientists
understand our oceans better.

Timeline

	2011 Founding -> CCC Camp MS 0x00

	2012 Hackathon for Android App ‘Social Bearing’

	2013 Mariner’s code: Computer hackers conquering the high seas

	2014 EuroPython Hackathons

	2015 Oh, camp again! We did some crowdsourced management

And now, we’re here!

You can check all this out on the intertubes. Youtube, CNN, etc.
Just search for ‘Hackerfleet’ - hmm.. succinct name, eh?

Founders

	Heiko ‘riot’ Weinen (riot@c-base.org, @__r107__, ri0t@github)

	Johannes ‘ijon’ Rundfeldt (ijon@c-base.org, @aegrereminiscen, ij0n@github)

Meet us at c-base, the spacestation below Berlin Mitte!

Communication

	github.com/Hackerfleet [https://github.com/Hackerfleet]

	Waffle.io/hackerfleet/hfos [https://waffle.io/hackerfleet/hfos]

	Twitter.com/hackerfleet [https://twitter.com/hackerfleet]

	Facebook/hackerfleet [https://www.facebook.com/Hackerfleet]

	hackerfleet.soup.io [http://hackerfleet.soup.io/]

	Also on G+ [https://plus.google.com/105528689027070271173]

	irc #hackerfleet on freenode [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4]

Note

Please be patient when using IRC, responses might take a few hours!

HFOS

	About HFOS

	HFOS System overview
	Architecture

	Meshed Operation

	No platform specifics

	What’s new here?

About HFOS

The Hackerfleet Operating System (Short HFOS) is being developed specifically to
target a handful of properties and challenges, that are unique to the projected use of the system:

	Locally offline and undisruptable operation (True Internet!)

	Extremely low energy profile

	Must work on embedded systems with low memory, storage and computing capacity

	Realtime handling and federation of incoming and outgoing data

	Many, many different bus and sensor systems as well as configurations

	Clients should not be limited in any way

To master all these challenges, a rather radical approach was chosen after evaluation
of most of the currently available frameworks and libraries.

HFOS System overview

Architecture

The system consists of two parts:
1. A backend written in Python. It handles communications, data handling and other general services provided by independent modules.
2. To communicate with users, a HTML5 based Frontend is deployed to most modern web browser capable clients.

Meshed Operation

The cloud/server-less mesh operation enables local independence and adaptability regarding
network environments.

No platform specifics

It also eliminates the need to write platform specific applications (e.g. native Android
or other mobile platform applications)

What’s new here?

At first glance, HFOS looks like just another web application platform.

In contrast to most available systems though, HFOS works using a component
based frontend and backend architecture.

This enables every installation to install, activate and use only the modules relevant
for the local group of users.

Also, communication between clients and the backend has been streamlined
and minimized by relying on Websockets.

Getting Started

	Quick Start Guide

	Requirements and Dependencies

	Downloading

	Installing

	Command Line Tools

Todo

Simplify the installation documents by stringing them together, so the other setup documents are more visible

Todo

Add setup section

Todo

Add crew setup

Todo

Add vessel setup

Todo

Add generic preferences setup

Quick Start Guide

Install script

The script currently only supports Debian based systems.

Note

Feel free to contribute installation steps for other distros - that is mostly adapting the package manager
and package names

To use the install script, get the source code (see Getting the source) if you
don’t have it already, then invoke the script with root permissions:

$ sudo ./install

If you run into trouble or get any unexpected errors, try the complex installation procedure.

Docker

We’re providing a Docker image for installation.

The command to get the current testing release is:

$ docker run -i -t hackerfleet/hfos hfos_launcher.py

Planned Installations

	We’re planning to offer ready-made SD card images for various embedded systems.

	A custom NixOS system is planned as well.

Requirements and Dependencies

Backend

HFOS’ backend has a few dependencies:

	Python [https://python.org]: >= 3.3 (or possibly pypy >= 2.0)

	Database: MongoDb [https://mongodb.org/]

Note

We’re phasing out Python 2.7 support.

A few more dependencies like nginx, and some python packages provided
per distribution are recommended, but not strictly necessary.

The HFOS Python package additionally installs a few pure Python libraries:

	Circuits

	Click and a few supporting packages

	PyMongo

	PyOpenSSL

	PyStache

	JSONSchema

	DPath

	DeepDiff

	Supported Platforms

	Linux

	Supported Python Versions

	(2.7), 3.3, 3.4, 3.5, 3.6

Frontend

The frontend is built with

	node [https://nodejs.org]

	npm [https://npmjs.com]

and others. The detailed list can be found in frontend/package.json
after pulling the frontend git submodule.

Todo

Link backend deps

Downloading

Latest Stable Release

By design, there is currently no stable release planned.

The latest stable releases (if there should ever be one) could be downloaded from the
Releases [https://github.com/hackerfleet/hfos/releases] page
(specifically the Tags tab).

Latest Development Source Code

We use Git [https://git-scm.com/] for source control and code sharing.

The latest development branch can be cloned using the following command:

$ git clone https://github.com/hackerfleet/hfos.git

For further instructions on how to use Git, please refer to the
Git Website [https://git-scm.com/].

Installing

First of all: The manual installation procedure is rather complex right now.

We’ve simplified the process by supplying an install script,
but if you encounter any trouble/problems, checkout these detailed installation steps.

If you still can’t get it to install, contact us via irc or email
and we’ll happily try to help you get your installation running.

This is very important for us, since the system has not yet been deployed
very often and we’re not yet aware of all of the pitfalls and traps on that
route.

We encourage you to use Python >= 3.5 for HFOS, but the system is
built (and checked against) 2.7, too.

Warning: HFOS is not compatible with Python 3.2!

Preparation

These instructions are for Debian or Ubuntu based systems. Installation
on other distributions is possible.

Before doing anything with HFOS, be sure you have all the dependencies
installed via your distribution’s package manager.

For Debian Unstable use this:

$ sudo apt-get install nginx mongodb python3.5 python3-pip python3-grib \
 python3-bson python3-pymongo python3-serial

If you want (and can, depending on your platform/distribution), install the
mongo and bson extensions for speedups:

$ sudo apt-get install python3-pymongo-ext python3-bson-ext

The system will need to get a bunch of more dependencies via npm to set up
the frontend, so install npm and if necessary the nodejs-legacy-symlink
package:

$ sudo apt-get install npm nodejs
$ sudo npm install npm@4.2.0 -g

If you want to install the full development dependencies to write
documentation as well, you need to install the enchant package:

$ sudo apt-get install enchant

In case you want to use raster (or in future: vector) charts in HFOS’ map module,
you’ll need to install libgdal and its binaries:

$ sudo apt-get install gdal-bin python-gdal

Note, that it is necessary to install python-gdal 2.7 - not the python3 variant,
as the scripts are not included in that.

Getting the source

To initially obtain the development source code if you don’t have it already,
use git thus:

$ mkdir ~/src
$ cd ~/src
$ git clone https://github.com/hackerfleet/hfos
$ cd hfos
$ git submodule init
$ git submodule update
$ git pull
$ cd frontend
$ git pull

Backend

The manage tool usually can install everything you need. It starts by adding
a new system user for HFOS and generating a (currently only self signed)
certificate.

The process also involves installing the supplied modules, getting the frontend
dependencies, building and installing the documentation, etc.

It also creates two folders in /var (lib/hfos and cache/hfos) for hfos’ tile-
cache and other stuff as well as install basic default provisions into the
database.

Finally, it installs and activates a systemd and nginx service script to launch
HFOS on bootup and make it available to users.

$ virtualenv -p /usr/bin/python3.5 --system-site-packages venv
$ source venv/bin/activate
$ pip install -Ur requirements.txt
$ python setup.py develop
$ sudo venv/bin/python hfos_manage.py install all

If you want to develop (documentation) as well, you’ll need to use the
requirements-dev.txt instead of the normal one.

If you want to manually start HFOS, invoke the launcher thus:

$ sudo ./venv/bin/python hfos_launcher.py

Running the launcher as root to be able to open ports below 1024 should be
safe, as it drops its root privileges, unless you specify –insecure,
which is strongly discouraged and only meant for development purposes.
The default is to use port 8055 and relay that with the supplied nginx
site definition

Documentation

The documentation is available online on ReadTheDocs.org [https://hfos.readthedocs.org].
If you wish to build and install the included documentation for offline use,
run these commands:

$ sudo ./venv/bin/python hfos_manage.py install docs

This installs all necessary documentation tools and copies the files to the
expected HFOS web data folder.

You can also build the PDF file (and various other formats) by using the
Makefile inside the docs directory.

$ cd docs
$ make pdf

Just running make without arguments gives you a list of the other available
documentation formats.

Installing from a Source Package

If you have downloaded a source archive, this applies to you.

$ python setup.py install

For other installation options see:

$ python setup.py --help install

Installing from the Development Repository

If you have cloned the source code repository, this applies to you.

If you have cloned the development repository, it is recommended that you
use setuptools and use the following command:

$ python setup.py develop

This will allow you to regularly update your copy of the hfos development
repository by simply performing the following in the hfos working directory:

$ git pull -u
$ cd frontend
$ git pull -u

Note

You do not need to reinstall if you have installed with setuptools via
the hfos repository and used setuptools to install in “develop” mode.

Windows & OS X installation notes

These instructions are WiP. The easiest way to get HFOS on Win7 or newer
is to install and user Docker or a virtual machine

To install on Windows, you’ll need to install these packages first:

	Python 3.5 https://www.python.org/downloads/windows/

	MongoDB https://www.mongodb.org/downloads#production

	pymongo

	numpy

Platform specific

There are some collected instructions for various hardware platforms:

	Raspberry Pi

Raspberry Pi

Swap

Since this machine doesn’t have much RAM, don’t forget to add a swap partition or file.

Command Line Tools

HFOS contains a few CLI scripts:

	HFOS Launcher

	Management Tool

HFOS Launcher

hfos_launcher

Bootstrap basics, assemble graph and hand over control to the Core
component

hfos_launcher [OPTIONS]

Options

	
-p, --port <port>

	Define port for server

	
--host <host>

	Define hostname for server

	
-c, --cert, --certificate <cert>

	Certificate file path

	
--dbhost <dbhost>

	Define hostname for database server

	
--dbname <dbname>

	Define name of database (default: hfos)

	
--profile

	Enable profiler

	
--opengui

	Launch webbrowser for GUI inspection after startup

	
--drawgraph

	Draw a snapshot of the component graph after construction

	
-q, --quiet

	Suppress console output

	
--log <log>

	Define console log level (0-100)

	
--logfileverbosity <logfileverbosity>

	Define file log level (0-100)

	
--logfilepath <logfilepath>

	Logfile path

	
--dolog

	Write to logfile

	
--livelog

	Log to in memory structure as well

	
--debug

	Run circuits debugger

	
--dev

	Run development server

	
--instance <instance>

	Define name of instance

	
--insecure

	Keep privileges - INSECURE

	
--norun

	Only assemble system, do not run

	
-b, --blacklist <blacklist>

	Blacklist a component

Management Tool

HFOS User’s Manual

	Welcome to the HFOS Users Manual!

	This part of the documentation explains how to work with HFOS and use the core modules.

Detailed Feature Overview

How to help the project?

Glad to see you’re interested in helping out the project!

Generally, you can ping riot if you want to help out and don’t exactly know where to start.

Here, we list a few possible opportunities where you can help us and become part of the driving community:

Communication

People need to be more aware of this project as it may be of great value to them.
If you’re interested in spreading the word and getting people involved, you’re very welcome to do so.
Again, please ping riot to get crucial info on how to do so.

Testing

There are various degrees to which you can test the project:

	Check the installation processes if they actually work on your platform and everything installs smoothly

	Test-drive your installation or the demo instance [https://demo.hackerfleet.de] (Currently offline for maintenance)

	Build and extend parts of the automatic testing infrastructure

	Optimize and extend the continuous integration infrastructure

User Experience

We’d value your input on some very important user experience questions:

	Is the current design logical and does it allow for a smooth user experience?

	Check the supplied modules and the framework itself for consistency and good UX practices

	Develop further use cases and user stories to spark new modules

Documentation

A lot of documentation is still missing. If you’re interested in writing documentation, you should be familiar
with the two core tools we use for generating our documentation:

	reStructured Text formatting [http://www.sphinx-doc.org/en/stable/rest.html]

	Sphinx [http://www.sphinx-doc.org/en/stable/index.html]

We still need a lot of module, core framework and source code documentation, so there’s ample opportunities in
this field.

Translations

Most of (if not all) parts of the project can be translated and are waiting for your help.
You can use Transifex [https://www.transifex.com/hackerfleet-community/hfos/] to translate all the strings
we have or work with your favourite PO Editor. Have a look at Translating HFOS for more details.

Developer Guidelines

This is the rather dry material for new software developers:

	Development Introduction
	Communication

	Standards

	Tools

	Contributing to HFOS
	Submitting Bug Reports

	Writing new tests

	Adding New Features

	Setting up a HFOS Development Environment
	Prerequisites

	Getting Started

	Development Processes
	Software Development Life Cycle (SDLC)

	Bug Reports

	Feature Requests

	Writing new Code

	Running the Tests

	Development Standards
	Cyclomatic Complexity

	Coding Style

	Revision History

	Unit Tests

	Translating HFOS

Development Introduction

Here’s how we do things in HFOS…

Communication

	IRC Channel [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4] on the FreeNode IRC Network [http://freenode.net]

	Issue Tracker [https://github.com/hackerfleet/hfos/issues]

Note

If you are familiar with IRC [http://en.wikipedia.org/wiki/Internet_Relay_Chat]
and use your own IRC Client then connect to the FreeNode Network and /join #hackerfleet.

Standards

We use the following coding standard:

	PEP-008 [http://www.python.org/dev/peps/pep-0008/]

We also lint our codebase with the following tools:

	pyflakes [https://pypi.python.org/pypi/pyflakes]

	pep8 [https://pypi.python.org/pypi/pep8]

	mccabe [https://pypi.python.org/pypi/mccabe/0.2.1]

Please ensure your Development IDE or Editor has the above
linters and checkers in place and enabled.

Alternatively you can use the following command line tool:

	flake8 [https://pypi.python.org/pypi/flake8]

Tools

We use the following tools to develop HFOS and share code:

	Code Sharing:
Git [https://git-scm.com/]

	Code Hosting and Bug Reporting:
GitHub [https://github.com/hackerfleet/hfos]

	Issue Tracker:
Issue Tracker [https://github.com/hackerfleet/hfos/issues]

	Documentation Hosting:
Read the Docs [http://hfos.readthedocs.org]

	Package Hosting:
Python Package Index (PyPi) [http://pypi.python.org/pypi/hfos]

	Docker Hub Automated Builds:
Dockerhub [https://hub.docker.com/r/hackerfleet/hfos/]

	Continuous Integration:
Travis CI [https://travis-ci.org/Hackerfleet/hfos]

	Code Quality:
Landscape [https://landscape.io/github/Hackerfleet/hfos/]

	Frontend Testing:
Browserstack [https://browserstack.com]

	Translations:
Transifex [https://www.transifex.com/hackerfleet-community/hfos/]

We strongly suggest familiarizing with all of them, to make sure you understand our CI.

Big thanks to all of these magnificent and free-for-opensource services!

Contributing to HFOS

Here’s how you can contribute to HFOS

Submitting Bug Reports

We welcome all bug reports. We do however prefer bug reports in a clear
and concise form with repeatable steps. One of the best ways you can report
a bug to us is by writing a unit test (//similar to the ones in our tests//)
so that we can verify the bug, fix it and commit the fix along with the test.

To submit a bug report, please Create an Issue [https://github.com/hackerfleet/hfos/issues/new]

Writing new tests

We’re not perfect, and we’re still writing more tests to ensure quality code.
If you’d like to help, please Fork HFOS [https://github.com/hackerfleet/hfos/#fork-destination-box], write more tests that cover more
of our code base and submit a Pull Request [https://github.com/hackerfleet/hfos/compare/]. Many Thanks!

Adding New Features

If you’d like to see a new feature added to HFOS, then we’d like to hear
about it~ We would like to see some discussion around any new features as well
as valid use-cases. To start the discussions off, please either:

	Chat with us [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4] on #hackerfleet on the FreeNode IRC Network

or

	Create an Issue [https://github.com/hackerfleet/hfos/issues/new]

Setting up a HFOS Development Environment

This is the recommended way to setup a development enviornment
for developing the backend and frontend of HFOS .

Note

This document assumes you already have a working Python [https://www.python.org/]
environment with a minimum Python [https://www.python.org/] version of 2.7 as well
as mongodb and pip [https://pypi.python.org/pypi/pip] already installed.

Prerequisites

It is highly recommended that you install and use virtualenv [https://pypi.python.org/pypi/virtualenv] for all your
Python [https://www.python.org/] development and production deployments (not just HFOS).

It is also convenient to install and use the accompanying shell scripts
and tools virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] which adds a nice set of workflows
and functions useful for both development and deployments.

$ pip install -U virtualenvwrapper
$ source $(which virtualenvwrapper.sh)

Note

You should put source $(which virtualenvwrapper.sh) in either
your $HOME/.bashrc or $HOME/.profile depending on how you
login and interact with your terminals.

In addition to the above recommendations you must also have a Git [https://git-scm.com/] client
installed and ready to use as well as your Editor/IDE of choice ready to use.

Getting Started

	Fork HFOS [https://github.com/hackerfleet/hfos#fork-destination-box]
(if you haven’t done so already)

	Clone your forked repository using Git [https://git-scm.com/]

	Create a new virtual environment using virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper]

	Install the Development Requirements [https://github.com/hackerfleet/hfos/blob/master/requirements-dev.txt]

	Install HFOS in “develop” mode

And you’re done!

Example:

$ git clone git@github.com:yourgithubaccount/hfos.git
$ cd hfos
$ mkvirtualenv hfos
$ pip install -r requirements-dev.txt
$ python setup.py develop

Development Processes

We document all our internal development processes here so you know exactly
how we work and what to expect. If you find any issues or problems, please
let us know!

Software Development Life Cycle (SDLC)

We employ the use of the SCRUM Agile Process [http://en.wikipedia.org/wiki/Scrum_(development)]
and use our Issue Tracker [https://github.com/hackerfleet/hfos/issues] to track features, bugs, chores and releases.
If you wish to contribute to HFOS, please familiarize yourself with SCRUM
and GitHub’s Issue Tracker [https://github.com].

Bug Reports

	New Bug Reports are submitted via:
https://github.com/hackerfleet/hfos/issues

	Confirmation and Discussion of all New Bug Reports.

	Once confirmed, a new Bug is raised in our Issue Tracker [https://github.com/hackerfleet/hfos/issues]

	An appropriate milestone will be set (depending on current milestone’s schedule and resources)

	A unit test developed that demonstrates the bug’s failure.

	A fix developed that passes the unit test and breaks no others.

	A New Pull Request [https://github.com/hackerfleet/hfos/compare/] created with the fix.

This should contain:
- A new or modified unit test.
- A patch that fixes the bug ensuring all unit tests pass.
- The Change Log [https://github.com/hackerfleet/hfos/tree/master/CHANGES.rst] updated.
- Appropriate documentation updated.

	The Pull Request [https://github.com/hackerfleet/hfos/pulls] is reviewed and approved by at least two other developers.

Feature Requests

	New Feature Requests are submitted via:
https://github.com/hackerfleet/hfos/issues

	Confirmation and Discussion of all New Feature Requests.

	Once confirmed, a new Feature is raised in our Issue Tracker [https://github.com/hackerfleet/hfos/issues]

	An appropriate milestone will be set (depending on current milestone’s schedule and resources)

	A unit test developed that demonstrates the new feature.

	The new feature developed that passes the unit test and breaks no others.

	A New Pull Request [https://github.com/hackerfleet/hfos/compare/] created with the fix.

This must contains:
- A new or modified unit test.
- A patch that implements the new feature ensuring all unit tests pass.
- The Change Log [https://github.com/hackerfleet/hfos/tree/master/CHANGES.rst] updated.
- Appropriate documentation updated.

	The Pull Request [https://github.com/hackerfleet/hfos/pulls] is reviewed and approved by at least two other developers.

Writing new Code

	Submit a New Issue [https://github.com/hackerfleet/hfos/issues/new]

	Write your code.

	Use flake8 [http://pypi.python.org/pypi/flake8] to ensure code quality.

	Run the tests:

$ tox

	Ensure any new or modified code does not break existing unit tests.

	Update any relevant doc strings or documentation.

	Update the Change Log [https://github.com/hackerfleet/hfos/tree/master/CHANGES.rst] appropriately.

	Submit a New Pull Request [https://github.com/hackerfleet/hfos/compare/].

Running the Tests

To run the tests you will need the following installed:

	tox [http://codespeak.net/tox/] installed as well as

	pytest-cov [http://pypi.python.org/pypi/pytest-cov]

	pytest [http://pytest.org/latest/]

All of these can be installed via pip install -r requirements-dev.txt.

Please also ensure - if you can - that you you have all supported versions of Python
that HFOS supports installed in your local environment.

To run the tests:

$ tox

Development Standards

We aim for the following development standards:

Cyclomatic Complexity

	Code Complexity shall not exceed 10

See: Limiting Cyclomatic Complexity [http://en.wikipedia.org/wiki/Cyclomatic_complexity#Limiting_complexity_during_development]

Coding Style

	Code shall confirm to the PEP8 [http://legacy.python.org/dev/peps/pep-0008/] Style Guide.

Note

This includes the 79 character limit!

	Doc Strings shall confirm to the PEP257 [http://legacy.python.org/dev/peps/pep-0257/] Convention.

Note

Arguments, Keyword Arguments, Return and Exceptions must be
documented with the appropriate Sphinx Python Domain [http://sphinx-doc.org/latest/domains.html#the-python-domain].

Revision History

	Commits shall be small tangible pieces of work.
- Each commit must be concise and manageable.
- Large changes are to be done over smaller commits.

	There shall be no commit squashing.

	Rebase your changes as often as you can.

Unit Tests

	Every new feature and bug fix must be accompanied with a unit test.
(The only exception to this are minor trivial changes).

Translating HFOS

Since 2018, we have all parts (Backend, Frontend, Modules) prepared for translations.

To translate HFOS, you can use Transifex [https://www.transifex.com/hackerfleet-community/hfos/]
or any PO editor of your choice.

Recent Changes

	Moved some WiP stuff out, added new stuff by ri0t at 2018-10-02 20:32:22

	Order of arguments fixed by ri0t at 2018-10-02 20:29:31

	Logging optimized by ri0t at 2018-10-02 20:29:12

	Long argument names should come first by ri0t at 2018-10-02 20:18:39

	Frontend ref updated by ri0t at 2018-10-02 20:04:55

	Todo list now working by ri0t at 2018-10-02 20:04:32

	Sidebar, state persistence and other features added by ri0t at 2018-10-02 20:04:27

	Resizer Fixes by ri0t at 2018-10-02 20:04:22

	Multi-field inserts in forms by ri0t at 2018-10-02 20:03:50

	Minor fixes by ri0t at 2018-10-02 20:03:43

Road Map

We manage our roadmap via milestones on our github issuetracker [https://github.com/hackerfleet/hfos/milestones].

Contributors

The following users and developers have contributed to HFOS:

	Heiko ‘riot’ Weinen (Primary maintainer)

	Johannes ‘ijon’ Rundfeldt

	Martin Ling

HFOS proudly uses the circuits framework. circuits was originally designed,
written and primarily maintained by James Mills (http://prologic.shortcircuit.net.au/).

Anyone not listed here, ping us. We appreciate any and all
contributions to HFOS and other Hackerfleet components.

Supporters

	Repository and issue tracker hosting:
Github [https://github.com"]

	Free OSS license of IntelliJ IDEA Ultimate:
Jetbrains [https://jetbrains.com"]

	Free OSS cross platform/browser user interface testing:
Browserstack [https://browserstack.com]

	Initial project conception phase funding:
Kenny Bentley

	Hosting and nix expertise:
Lassulus

Todo

Remove/Merge original list and asset docs to this document

Frequently Asked Questions

General

	… What is HFOS?

	HFOS is an opensource navigation and communication platform.

	… What platforms does HFOS support?

	We currently test on Debian, various flavours of Python (3.3, 3.4, 3.5, 3.6, pypy)
It’ll probably run on various other platforms as well. E.g. we’ve made good experiences with Arch Linux.

Got more questions?

	Meet us and chat with us online on the #hackerfleet IRC Channel [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4]

Note

Please be patient when using IRC, responses might take a few hours!

Glossary

	GPS

	a navigational system involving satellites and computers
that can determine the latitude and longitude of a receiver
on Earth by computing the time difference for signals from
different satellites to reach the receiver [syn: {Global
Positioning System}, {GPS}]

	NMEA

	National Marine Electronics Association [protocol] (org., USA, GPS), http://www.nmea.org

	Radar

	measuring instrument in which the echo of a pulse of
microwave radiation is used to detect and locate distant
objects [syn: {radar}, {microwave radar}, {radio detection
and ranging}, {radiolocation}]

	VCS

	Version Control System, what you use for versioning your source code

Documentation TODO

Global TODO

	Clean up docstrings

	Shorten Index

	Split up Index?

	Shorten Index title lengths

	Import nautical glossary

	Multilang

Local TODO

Todo

Remove/Merge original list and asset docs to this document

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/contributors.rst, line 32.)

Todo

Simplify the installation documents by stringing them together, so the other setup documents are more visible

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/start/index.rst, line 13.)

Todo

Add setup section

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/start/index.rst, line 14.)

Todo

Add crew setup

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/start/index.rst, line 15.)

Todo

Add vessel setup

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/start/index.rst, line 16.)

Todo

Add generic preferences setup

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/start/index.rst, line 17.)

Todo

Link backend deps

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hfos/checkouts/latest/docs/source/start/requirements.rst, line 49.)

Development README Page

[image: Build Status]
 [https://travis-ci.org/Hackerfleet/hfos][image: Quality]
 [https://landscape.io/github/Hackerfleet/hfos/master][image: Coverage]
 [https://coveralls.io/r/Hackerfleet/hfos][image: Requirements Status]
 [https://requires.io/github/Hackerfleet/hfos/requirements/?branch=master][image: IRC Channel]
 [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4>]
HFOS - The Hackerfleet Operating System

A collaborative and modular infrastructure for your data.

	Geo Information Use a sophisticated map to annotate and review geographical information

	Vehicle support Attach a sailyacht, your camper or pack one in your backpack

	Project planning Issue tracking for collaborative teams

	Modular Expandable with integrated modules, build your own

	Cloud independent Run nodes on your own infrastructure

Installation

There is more than one way of installing HFOS, see the quickstart instructions for those [http://hfos.readthedocs.io/en/latest/start/quick.html].

The simplest way is to use the supplied installation script:

sudo ./install

The installation produces a lot of output which is automatically piped into ‘output.log’.
It installs all dependencies then sets up a user account and the system’s services.
This assumes, that you’re not running another web server on port 443 and that your firewall is
configured to allow communications on that port.
HFOS modules may require additional open ports, to find out about that, read their readme files.

If you run into trouble or get any unexpected errors, contact us or try the complex installation procedure [http://hfos.readthedocs.io/en/latest/start/installing.html].

Modules

The system is modular, so you can install what you need and leave other things.

A lot of the included modules are still Work in Progress, so help out, if you’re interested
in a powerful - cloud independent - collaboration tool suite.

General modules

These are ‘official’ Hackerfleet developed modules. If you’d like to contribute your own,
ping riot@c-base.org, to get it added to the list.

	Name

	Description

	sails

	Web UI, compatible with all modern browsers

	automat

	Automation for non programmers

	alert

	User alerting and notification system

	calc

	Integrated EtherCalc

	camera

	Camera support

	chat

	Integrated chat

	comms

	Communication package

	countables

	Count arbitrary things

	dash

	Dashboard information system

	enrol

	Enrollment (new user) management

	equipment

	Equipment management

	filemanager

	File management

	garden

	Garden automation tools

	ldap

	LDAP user authorization

	library

	Library management

	mesh

	Mesh networking

	nodestate

	Node wide status system

	polls

	Tool for lightweight internet voting

	project

	Project management tools

	protocols

	Miscellaneous communication protocols

	robot

	RC remote control unit

	shareables

	Shared resource blocking tool

	switchboard

	Virtual switchboard

	wiki

	Etherpad + Wiki = awesomeness

Many of these are not yet fully usable, so please help out and perhaps take ownership of one (or more) of them!

Navigation (Hackerfleet) modules

We primarily focused on navigation tools, so these are currently the ‘more usable’ modules.
They are far from complete, see the WiP list below.

Obligatory Warning: Do not use for navigational purposes!
Always have up to date paper maps and know how to use them!

	Name

	Description

	anchor

	Automatic anchor safety watcher

	busrepeater

	Tool to repeat navigation data bus frames to other media

	logbook

	Displaying and manual logging of important (nautical) events

	maps

	(Offline) moving maps with shareable views/layers

	navdata

	Navigational data module

	nmea

	NMEA-0183 Navigation data and AIS bus parser

	webguides

	Importer for skipperguide.de wiki content into the map

Work in progress

	Full GDAL based vector chart support (Currently only raster charts)

	Dynamic Logbook

	GRIB data (in charts)

	Navigation aides, planning

	Datalog, automated navigational data exchange

	Crew management, more safety tools

	wireless crew network and general communications

Bugs & Discussion

Please research any bugs you find via our Github issue tracker for
HFOS [https://github.com/hackerfleet/hfos/issues] and report them,
if they’re still unknown.

If you want to discuss distributed, opensource (or maritime) technology
in general incl. where we’re heading, head over to our Github discussion
forum [https://github.com/hackerfleet/discussion/issues]
…which is cleverly disguised as a Github issue tracker.

You can also find us here:

	github.com/Hackerfleet [https://github.com/Hackerfleet]

	reddit [https://reddit.com/r/hackerfleet]

	Twitter [https://twitter.com/hackerfleet]

	Facebook [https://www.facebook.com/Hackerfleet]

	soup.io [http://hackerfleet.soup.io/]

	G+ [https://plus.google.com/105528689027070271173]

	irc #hackerfleet on freenode [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4]

Note

Please be patient when using IRC, responses might take a few hours!

Contributors

Code

	Heiko ‘riot’ Weinen riot@c-base.org

	Johannes ‘ijon’ Rundfeldt ijon@c-base.org

	Martin Ling

	Sascha ‘c_ascha’ Behrendt c_ascha@c-base.org

Assets

	Fabulous icons by iconmonstr.com and Hackerfleet contributors

Support

	c-base e.V. [https://c-base.org] our home base, the spacestation below Berlin Mitte

	Lassulus for hosting and nix expertise

	Github [https://github.com] for hosting our code

	Travis.CI [https://travis-ci.org] for continuous integration services

	BrowserStack [https://browserstack.com] for cross device testing capabilities

License

Copyright (C) 2011-2018 riot <riot@c-base.org> and others.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

– :boat: :+1:

Index

 Symbols
 | G
 | H
 | N
 | R
 | V

Symbols

 	
 	
 --dbhost <dbhost>

 	hfos_launcher command line option

 	
 --dbname <dbname>

 	hfos_launcher command line option

 	
 --debug

 	hfos_launcher command line option

 	
 --dev

 	hfos_launcher command line option

 	
 --dolog

 	hfos_launcher command line option

 	
 --drawgraph

 	hfos_launcher command line option

 	
 --host <host>

 	hfos_launcher command line option

 	
 --insecure

 	hfos_launcher command line option

 	
 --instance <instance>

 	hfos_launcher command line option

 	
 --livelog

 	hfos_launcher command line option

 	
 	
 --log <log>

 	hfos_launcher command line option

 	
 --logfilepath <logfilepath>

 	hfos_launcher command line option

 	
 --logfileverbosity <logfileverbosity>

 	hfos_launcher command line option

 	
 --norun

 	hfos_launcher command line option

 	
 --opengui

 	hfos_launcher command line option

 	
 --profile

 	hfos_launcher command line option

 	
 -b, --blacklist <blacklist>

 	hfos_launcher command line option

 	
 -c, --cert, --certificate <cert>

 	hfos_launcher command line option

 	
 -p, --port <port>

 	hfos_launcher command line option

 	
 -q, --quiet

 	hfos_launcher command line option

G

 	
 	GPS

H

 	
 	
 hfos_launcher command line option

 	--dbhost <dbhost>

 	--dbname <dbname>

 	--debug

 	--dev

 	--dolog

 	--drawgraph

 	--host <host>

 	--insecure

 	--instance <instance>

 	--livelog

 	--log <log>

 	--logfilepath <logfilepath>

 	--logfileverbosity <logfileverbosity>

 	--norun

 	--opengui

 	--profile

 	-b, --blacklist <blacklist>

 	-c, --cert, --certificate <cert>

 	-p, --port <port>

 	-q, --quiet

N

 	
 	NMEA

R

 	
 	Radar

V

 	
 	VCS

API Documentation

Authentication

Here, have a sequence diagram:

HFOS Developer Manual

Core Library

	Web Client Mechanics

	Schemata

	Provisions

	Authentication

Miscellaneous

	Tools

Provisions

These are partially external data sources like URLs.

Schemata

Schemata are used to validate and store objects across backend and frontend.
They are used as document definitions for warmongo which acts as a kind of ORM system.

They are also used by the frontend to generate forms and validate user input.

Web Client Mechanics

The ClientManager handles web clients in cooperation with the WebSocket.
All client and user requests run through the ClientManager.

Legitimate requests are fired off to their according request managers.

It delegates authentication requests separately to the Auth Component.

Tools

Hmm. This looks like a construction site. Heh.

 _static/comment-bright.png

_images/seqdiag-2aaf1e560e3925f1caf0d7e1af64ba8335bb7f65.png
authentioationrequest”

userebject 1)

Tientoontigobyect &

rofiessiect by

uthentioation
| Suthentioation

wserebject
profilehject
clientoontigobject

““““““*

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 HFOS Documentation

 		
 Hackerfleet

 		
 Who we are

 		
 Our goals

 		
 Timeline

 		
 Founders

 		
 Communication

 		
 HFOS

 		
 About HFOS

 		
 HFOS System overview

 		
 Architecture

 		
 Meshed Operation

 		
 No platform specifics

 		
 What’s new here?

 		
 Getting Started

 		
 Quick Start Guide

 		
 Install script

 		
 Docker

 		
 Planned Installations

 		
 Requirements and Dependencies

 		
 Backend

 		
 Frontend

 		
 Downloading

 		
 Latest Stable Release

 		
 Latest Development Source Code

 		
 Installing

 		
 Preparation

 		
 Getting the source

 		
 Backend

 		
 Documentation

 		
 Installing from a Source Package

 		
 Installing from the Development Repository

 		
 Windows & OS X installation notes

 		
 Platform specific

 		
 Command Line Tools

 		
 HFOS Launcher

 		
 Management Tool

 		
 HFOS User’s Manual

 		
 Detailed Feature Overview

 		
 How to help the project?

 		
 Communication

 		
 Testing

 		
 User Experience

 		
 Documentation

 		
 Translations

 		
 Developer Guidelines

 		
 Development Introduction

 		
 Communication

 		
 Standards

 		
 Tools

 		
 Contributing to HFOS

 		
 Submitting Bug Reports

 		
 Writing new tests

 		
 Adding New Features

 		
 Setting up a HFOS Development Environment

 		
 Prerequisites

 		
 Getting Started

 		
 Development Processes

 		
 Software Development Life Cycle (SDLC)

 		
 Bug Reports

 		
 Feature Requests

 		
 Writing new Code

 		
 Running the Tests

 		
 Development Standards

 		
 Cyclomatic Complexity

 		
 Coding Style

 		
 Revision History

 		
 Unit Tests

 		
 Translating HFOS

 		
 Recent Changes

 		
 Road Map

 		
 Contributors

 		
 Supporters

 		
 Frequently Asked Questions

 		
 General

_static/file.png

_static/down.png

_static/logo_small.png

_static/minus.png

_static/logo.png

_static/logo_docnavbar.png

_static/plus.png

_static/up-pressed.png

_static/up.png

